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5    INTRODUCTION 

5.1     Nature of the problem 

The potential benefits of early diagnosis of cancer were recognized many years ago, before 

soft tissue imaging was available. This goal was behind the first efforts to apply ultrasound 

to the problem of the detection/diagnosis of breast cancer. Since then, many investigators 

have devoted effort to this problem because of the known advantages of ultrasound: it is 

non-ionizing, relatively inexpensive and uses widely available, portable, equipment. Today, 

with the success of x-ray mammography as an early screening tool, there is still room for 

improved methods, since there is disagreement regarding the use of ionizing radiation for 

screening, or routine exams. Also, the fibrous tissue of dense breasts gives poor results in 

conventional mammograms. 
Ultrasound is now available as an adjunctive modality in many breast clinics, where 

it is used to determine if masses with smooth borders are cystic or solid and to examine 

dense young breasts. Biopsy is still used often to determine malignancy. The cystic/solid 

determination can be a problem in borderline cases, because of the tendency of some 

ultrasonic systems to "fill in" the echo free space with artifactual echoes and thus make 

a cyst appear to be solid. There is a need for better ultrasound systems, as well as to 

have a more general-purpose imaging modality available than the x-ray, particularly if this 

modality had the advantages listed for ultrasound. 

Several factors have been identified in the literature as those contributing to poor res- 

olution of ultrasound images. In B-Scan images, finite signal bandwidth of the ultrasonic 

transducers is a major reason for low resolution in the temporal axis, whereas the non 

negligible beam width highly contributes to that in the lateral direction [18], [7], [14], [44], 

[21]. The resolution also depends on the frequency at which the imaging system operates. 

In addition to equipment limitations, there are factors originating from the nature of the 

tissue being imaged. Phase aberrations and velocity variations arising from acoustic in- 

homogeneitv of tissues are two of the important causes, not only for low resolution but 

also for low contrast in images [39], [11], [6]. The observed ultrasonic image can, therefore, 

be considered as a distorted version of the true tissue image, where the axial distortion is 

dominated by the pulse-echo wavelet of the imaging system and the lateral distortion by 

the lateral beam profile. 



5.2    Background of previous work 

The problem of compensating for imaging distortions has been very active research area, 

underscoring the importance in improving diagnostic quality of ultrasonic images. There 

have been several approaches to cancel out the aberration effects, but there is no consensus 

as to the best way to achieve it [10], [26], [25], [38]. In [10] it was proposed estimating 

the differences in arrival times between two adjacent receiving element locations using 

cross correlation techniques; these results were used to modify phasing characteristics of 

the transducers for ensuing scans. In [25], using an idea adapted from optics, phasing 

characteristics were determined using speckle brightness as a measure of image quality. 

The availability of convolution models, such as in [17], [9], for ultrasound image for- 

mation and the wide availability of digital computers has given an added importance to 

discrete-time deconvolution methods, as a means of improving images beyond the capabil- 

ities of hardware. A few researchers have investigated the true 2-D deconvolution of RF 

images [9], [18], [32], whereas most of the published works are on 1-D techniques [44], [21], 

[23], [19], [14]. 
Since the resolution along the lateral direction was much worse than that along the 

temporal axis, a number of attempts were focussed on deconvolution of lateral image lines. 

In [44], a B-mode image was considered to be an ensemble of lateral lines corresponding 

to lateral slices through the envelope detected image, at given times (depth). Observing 

that the point-spread function of a typical pulse-echo imaging system is highly elongated 

along the lateral direction, they hypothesized that lateral image lines can be approximately 

described by a 1-D convolution model. Their model consisted of two 1-D terms: a signal of 

interest called the tissue reflectance and a blurring kernel in the lateral direction called the 

lateral point spread function. The latter function was defined to be the laterally varying 

component of the 2-D point spread function, whose axial variation had been approximated 

by a Dirac delta function. The problem of resolution enhancement was posed as one of 

extracting the the tissue reflectance from the observed image, assuming a perfect knowledge 

of the lateral point spread function. Using a Gaussian shaped hypothetical lateral point 

spread function, it was shown that at the best signal to noise ratio that can be expected 

from ultrasound images, deconvolution will lead to a resolution enhancement of no better 

than 2.0. The definition of the resolution was based on the reciprocal of the effective width 

of the lateral point spread function. However, the amount of improvement was also reported 

to be dependent on the exact shape of the lateral point spread function. These figures were 

found to be in agreement with the empirical numbers reported in [14]. Several others have 

reported results on 1-D lateral deconvolution [43]. [33]. [21] , where in [33] it was concluded 



that the computational effort on lateral deconvolution was wasted because of the very low 

resolution enhancement they could obtain at the expense of introducing more artifacts. 

The drawbacks of the lateral deconvolution techniques discussed above are the following. 

Although the quantity displayed on an ultrasound imager is the envelope of the received RF 

signal the image formation process actually occurs in the RF domain. In [32] it is pointed 

out that in general the convolutional model of image formation in the RF domain does 

not hold for envelope detected signals. It is concluded that the 1-D lateral deconvolution 

on envelope succeeds only in the special case where no phase interference from nearby 

reflectors is present. 
All the papers, except [21], on lateral deconvolution mentioned above, relied on mea- 

suring the lateral beam profile to be used in computations. To obtain the true tissue image 

from the distorted observation, one requires quantitative information on the complex beam 

shape and acoustic velocity variations in-vivo, which are impossible to measure directly. In 

highlv simplified situations such as measurements of wire targets under water, it is possible 

to get that information reliably. However, in the case of in-vivo tissue targets, such infor- 

mation is generally unavailable. The measurements done under water are not valid with 

clinical images, even when the imaging system used is the same, because of the effects of 

phase aberrations, nonlinearities and dispersive attenuation introduced by the tissues [21], 

[11], [39] , [6]. thus dramatically limiting the clinical applicability of those methods. 

In [21]'. a line-bv-line lateral deconvolution technique which does not require the complex 

beam shape in tissue or phase information on adjacent lateral lines, was proposed. This 

method too, however, worked on amplitude detected B-scan images. It hinges on the key 

assumption that the transfer function of the imaging system along a lateral image line 

can be approximated bv the smoothed Fourier transform of the lateral image line itself. 

A convolution relationship between the envelope of a lateral point spread function and a 

slowly varying envelope of the tissue response has been tacitly assumed. Thus this method 

is subject to all the limitations implied by the above assumptions. 

In'spite of the fact that temporal resolution in an ultrasound image is much higher 

than the lateral resolution, axial deconvolution is still of importance. Besides the obvious 

advantage in improved axial resolution, the removal of the effect of the ultrasound pulse 

echo wavelet (through axial deconvolution) will tend to make the appearance of images more 

uniform over different subjects [16], thus simplifying the diagnosis procedures. As the shape 

of the pulse echo wavelet changes with propagation due to dispersive attenuation, a first 

step in axial deconvolution often involves the estimation of the pulse in tissue. Parametric 

modeling of speckle-onlv image lines has been proposed [37], [20]. [16]. However, such 

approaches are limited bv the problems such as the model order selection, associated with 



parametric modeling. In [19] a Kaiman filter technique was applied to estimate pulse echo 

wavelets as well as to simultaneously improve the axial resolution. The success of the 

method was reported to be dependent on the SNR of the observations and the accuracy at 

which the observations could be modeled. A non-parametric approach for the estimation 

of the pulse was proposed in [15], where the minimum-phase equivalent of the pulse-echo 

wavelet was separated from the tissue response. However, quite often pulse-echo wavelets 

and lateral kernels are non-minimum phase signals, thus limiting the generality of this 

approach. 

5.3    Methods of approach 

In the past year we introduced a novel non-parametric framework for deconvolution of 

B-scan images [1], [2], [3], [4], [5]. We first developed a model for the rf image, and then 

reconstructed distortions using higher-order statistics of the measured image lines. Based 

on the estimated distortions we performed deconvolution of the corresponding images and 

demonstrated that the resolution of ultrasound images of tissue mimicking phantom as well 

as human tissue images was significantly improved. In the past, estimation of distortions 

has been carried out using exclusively second order statistics (autocorrelation). Autocor- 

relation, however, can recover only the minimum phase quivalent of the true distortions, 

because it is blind to phase. We also estimated distortions using second order statistics 

of the image lines. We showed that although these estimates did lead to resolution im- 

provement, the amount of improvement was less significant that the one obtained with the 

higher-order statistics based estimates. 
Image formation process in the RF-domain is described by a 2-D convolutional model, 

where the attenuation of the pulse-echo wavelet and beam aberration effects can be indi- 

rectly incorporated [17], [18], [16]. Two 1-D blurring kernels, corresponding to axial and 

lateral directions, is hypothesized to represent distortions along respective axes. The axial 

distortion kernel includes the blurring effects due to the finite bandwidth of the transducer, 

and dispersive attenuation of the pulse-echo wavelet in tissue. The lateral distortion kernel 

represents the convolutional components of lateral blurring due to the complex beam pat- 

terns. Formalizing a definition for resolution, we show that compensation for the effects of 

the blurring kernels improves the resolution of the image. 
The proposed method has the advantage of being able to estimate these kernels at 

each image line, axial and lateral, thus capturing the variations within the image. Since 

the estimations are based on higher-order statistics [24] of RF-data, the estimated kernels 

are robust to additive observation noise and also have correct phase.   To the best of our 



knowledge, the method we proposed [1] is the first one to in-vivo estimate the distortion 

kernels with their true phase, as opposed to conventional methods that estimate minimum- 

phase equivalent of kernels. 

6    BODY 

6.1    Modeling the rf image 

During an ultrasonic investigation, a three-dimensional pulsed pressure field is emitted 

into the tissue. The field interacts with the tissue and part of it is reflected, scattered, and 

subsequently received by the transducer. Under the assumptions of linear propagation and 

weak scattering, an expression for the received pressure field was derived in [17], using the 

first order Born approximation. Absorption effects were neglected. The equation has been 

expressed as a convolutional model in the following form: 

y(r2,<) = vpe{t) *t /(rj *r hpe{rur2,t) + w{r2.t] :r 

where: 
• n, r2 are vectors denoting the location of the scatter«- and the transducer, respectively; 

• '• *,,: and "< denote time and spatial convolution, respectively; 

• /(n) originates from the inhomogeneities in the tissue due to density and propagation 

velocity perturbations above their mean levels, giving rise to the back scattered signal [tis- 

sue response).: 
• vpe{t) is the pulse-echo wavelet that accounts for the transducer excitation and the im- 

pulse responses during emission and reception of the pulse; 

• ftpe(n, r2, i)is the modified pulse-echo spatial impulse response that relates the transducer 

geometry and the spatial extend of the scattered field. The computation of hpe(vuv2,t) 

is based on the approach described in [41]. [35]. Convolutional components of aberrations 

and dispersive attenuation, which introduce spatially varying effects to the process, may 

be incorporated in this already spatially varying kernel. 

[r2,t) represents measurement noise and the unmodeled dynamics of the image forma- • w[ 

tion process. 
The problem of extracting the tissue response /(ri) from the observation y{r2,t) is a 

deconvolution problem. Since a B-mode image is a mapping from the 3-D tissue space to 

the 2-D space of the display, the solution is not unique in general. This non-uniqueness 

should be obviated by making reasonable assumptions about the 3-D structure of the tissues 

being imaged [9].  An assumption implicit in cases where the deconvolution is done using 



kernels confined to the imaging plane is that all image features in the imaging-plane extend 

perpendicular to the corresponding plane in the tissue space, so as to make the height of 

extension the effective height of the beam. 
The convolution model of (17) expresses the fact that the received signal at the trans- 

ducer site r2 is a result of linear spatio-temporal interaction between the signal of interest 

/(n) and a distortion kernel. Thus, the measured signal contains a distorted version of 

the true tissue response /(n). Deconvolving these kernels should improve image resolution 

and contrast. It should also remove aberration-induced artifacts that result from changing 

beam profiles inside the tissue. 
As discussed in the introduction, efforts to carry out this deconvolution have been 

hampered by the difficulties in measuring the modified spatial impulse response of the 

imaging system. Underwater measurements using simplified targets would not reveal any 

significant changes undergone by the interrogating beam in tissue. 

Our goal here is actually to identify the combination of vpe(t) and the spatially varying 

kernel hpe(rur2,t), and subsequently cancel it from the image in order to improve lateral 

as well as axial resolution. Let us combine both smoothing kernels vpe(t) and hpe{rlr r2J) 

in one spatially and temporally varying kernel h(vuv2J). which we are going to refer to 

as the ultrasonic system impulse response. For discrete time, and for some fixed transducer 

location (17) is equivalent to the following two-dimensional convolutional model 

(/,n) = $:i:/(t,i)Ä(/-*,"-i) + «'(/'")' (2) 

where j/(/,n) represents the sample from the Z-th A-line at discrete time n. The goal here 

is to identify the time varying ultrasonic system response h(l,n), and recover the tissue 

response, /(?',j), from the noisy measurement y{k,l). 

However, we will not attempt a true 2-D deconvolution in this paper. As is commonly 

done in ultrasound deconvolution literature [15], [23], [18], [19], we assume that an RF 

A-line can be expressed as a convolution between two 1-D axial terms: a hypothetical 

tissue response and a distortion kernel. This view is not unique to the image deconvolution 

literature; ultrasound Doppler systems and tissue attenuation estimation techniques tacitly 

depend on it [15]. Reducing the problem to a 1-D deconvolution is analogous to the original 

decomposition of the true 3-D deconvolution problem in to a 2-D one. 

10 



6.1.1    In vivo distortion estimation using higher-order statistics (HOS) 

In the following we will treat each image line (either in ateral or axial direction) separately 

assuming the 1-D model 

yi(n) = hi{n) * fi{n) + w{(n), i = 1,2,..., (3) 

where i is the A-line index; /<(n) is the axial or lateral tissue response; hi(n) is the axial or 

lateral distortion kernel; which describes the distortion associated with the 7-th line; and n 

denotes discrete time. We assumed that: 

(Al) hi(n) is deterministic, possibly non-minimum phase, 

(A2) fi[n) is stationary, white, independent identically distributed (i.i.d.), zero-mean non- 

Gaussian, 

(A3) Wi(n) is white zero-mean Gaussian, and independent of ft(n). 

If we consider a region of the image that contains only speckle, these assumptions should 

hold reasonably well. 
The third order cumulant of the observation y{(n) is defined as [24] : 

cy:(T.p) = E{yi(n)yi(n + r)y;(n + p)} (4) 

The bispectrum of the yi{n) is defined to be the Fourier transform of the third order 

cumulant. Under assumptions (Al) - (A3), the bispectrum of y,-(n) is given by [24]: 

where CSi{u>uu2) is the bispectrum of /,-(n), H^Lü) is the spectrum of hi(n) and Cw\u>i,u*) 

is the noise bispectrum. If the additive noise is zero-mean Gaussian, then ^,(^,^2) = 0 

[24] and (4) becomes, 

Cy,(u;uuj2) = CJM-»>2)Hi(Lüi)Hi(u>2)H*(*1+u>2) (6) 

The bicepstrum is defined as the cepstrum of the bispectrum, from which we get: 

6j,,(mi,m2) = bf,{mum2) + chi{mi,m2), (0 

where bf (m,.m2). cki{mum2) are the bicepstra of /,-(n) and /.,-(»)- respectively. 

If f.(n) is stationary independent identically distributed (i.i.d.). its third order spectrum 

is flat' lud equal to the skewness. Vl. of the process. Therefore, its bicepstrum will be an. 

11 
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impulse located at the origin.   In that case, using bicepstral values along the main axes 

except at the origin, we can reconstruct a scaled and shifted version of /i,-(n) as: 

hi(n) = F-1{eFW»}, (8) 

WhCre (bvi(m,0)      m>0 
ch.{m) = <   0 m = 0 (9) 

( 6yi.(-m,0)    m<0. 

We assume that a similar 1-D model holds in the lateral direction of the RF-image. 

Then, a similar procedure can be followed to estimate lateral distortion kernels at each line. 

The kernels thus estimated will include the convolution^ components of aberration as well. 

Therefore, axial deconvolution followed by lateral deconvolution, or various combinations 

thereof, should give us distortion compensated RF images which will have higher resolution 

and contrast. The ability to estimate and remove beam distortion effects (due to aberration) 

is seen as a major advantage of this method over other non-parametric techniques [15], [21]. 

The method proposed in [15], as is, can not estimate non-minimum phase signals, whil 

that of [21] has been designed for envelope detected signals. 

6.1.2     In vivo estimation of the minimum phase equivalent of distortion using 

second-order statistics (SOS) 

Using the model of eq.   (3), second order statistics were also used to estimate imaging 

distortions [12], [13]. 
Transforming (3) in the autocorrelation domain (second-order statistic) we get: 

ry,(r) = E{yi(n)yi(n + r)} = 4' E WM« + O + ^M, (10) 

where -){' is the variance of /,-(n). if ^ the variance of the noise, and 6(r) is the unit 

impulse. The power cepstrum is defined as the inverse Fourier transform of the logarithm 

of the Fourier transform of the autocorrelation. Assuming that the noise level is low enough, 

in the power cepstrum domain we get: 

where h{(k) is the power cepstrum of the distortion kernel associated with the ^üne 

From its power cepstrum, we can reconstruct the minimum phase equivalent of h{' n) 127 

hi(n) = F-'lexpiFlMkMk)}}), (12) 

12 
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where F[] and F_1[.] denote forward and inverse Fourier transforms, and 

w(k)-lh    k>° (13> [  '     \ 0,   otherwise. 

6.2    Experiments 

The goals of our experimental work were to: 

1 Compare the axial distortions, estimated based on higher-order statistics (HOS-based 

distortions), with experimentally obtained ones. Validate the imposeed assumptions 

assumptions (see Section 6.1.1). 

2. Estimate HOS-based distortions from clinical ultrasound images. Deconvolve ul- 

trasound images using the HOS-based estimated distortions. Quantify resolution 

improvement. 

3. Deconvolve clinical image using distortions estimated based on second-order statistics 

(SOS-based distortions) as outlined in Section 6.1.2). Quantify resolution improve- 

ment. 

4. Compare resolution improvement of deconvolution with HOS-based and SOS-based 

distortions. 

Towards the above goals we collected the following data: 

• Water-tank measurements: 

Experiment A 
We obtained B-Scan images of an ATS model 532 contrast resolution phantom 

which was positioned in a water tank. The target area consisted of the tissue 

mimicking background which had a scatterer density of 32 scatterers/™™3- The 

transducer we used was a model GE1046S2 curved device with a nominal center 

frequency of 3.5 MHz. The nominal focal zone of the transducer was 6-13 cm. A 

stepper motor with a step size 0.0257m» controlled the position of the transducer 

under the guidance of a personal computer. Data acquisition was done through 

a LeCroy model 9450A dual channel digital oscilloscope connected to the PC by 

a GPIB interface. Transducer was moved across the scanning plane in steps of 

0.25mm. and RF echos were sampled at a 13.3 MHz rate. 

13 



Experiment B 
A long piece of freshly peeled wire of diameter 0.812mm was placed underwater 

so that it was parallel to the transducer surface and perpendicular to the scan- 

ning plane. It was kept inside the focal zone of the transducer, at a distance 

8cm away from the transducer surface. The experimental setup used here is 

the same as in experiment (A). The wavelet reflected from the wire surface was 

recorded and taken to be an approximate estimate of the pulse-echo wavelet of 

the imaging system. 

• Measurements from Clinical Equipment: 

Experiment C 
To demonstrate the performance of our method on data from more realistic 

equipment, we imaged the same ATS532 phantom using a linear array sector 

scan transducer on a model UltraMark-9 clinical imaging system manufactured 

by Advanced Technology Laboratories. Seattle, U.S.A. The target area consisted 

of two cylinders with scatterer densities 4 and 8 scatterers/mm3, embedded 

in a tissue mimicking background of 32 scatterers/mm3. The nominal center 

frequency of the scanner was 3.5 MHz: the field of vision was 60°. Data were 

sampled at a rate of 12 MHz. No TGC was employed. 

Experiment D 
To demonstrate the performance of our method under clinical conditions, we 

obtained a liver scan of a patient imaged by ultrasonologists at the Thomas Jef- 

ferson University Hospital, Philadelphia, on the same imaging system described 

under experiment (0). The patient has been diagnosed with hypoechoic multiple 

liver metastatic tumor. No T.G.C. had been applied: locus of the imaging sys- 

tem at transmission was set at 2cm, and dynamic focusing was employed with 

the receiving mode. 

6.3     Results 

6.3.1     Water-tank experiments and the accuracy of our estimation method 

In order to demonstrate the validity of our kernel estimation procedure, we used the data 

from underwater measurements, i.e. experiments (A) and (B). A part of the RF image data 

that we gathered using the circular transducer in experiment (A) is shown in Fig. 1(a). 

where the logarithm of the envelope has been used for display purposes. 

14 



Under the assumption that the axial blurring kernel of an image line does not signifi- 

cantly depend on the lateral location of the line, data from several nearby axial RF lines 

can be used to make a longer data vector, which will enable us to obtain better cumulant 

estimates. In order to minimize the effect of attenuation on our estimations, from each 

A-line i we considered data segments yi(k) of length not more than 2N samples. The 

number of adjacent line segments yi(k) concatenated was in the range i = l- 10. In the 

axial kernel estimations, we used M = 10 and N = 64. 

Axial blurring kernels estimated with the method of Section 6.1.1 from different regions 

of the image in Fig 1(a) are shown in Fig. 2(a), in dotted lines. All of these kernels have 

been estimated from axial data obtained at the same depths of the image, but at different 

lateral locations. The mean axial blurring kernel, vm(t), which was computed as the average 

of estimated kernels, is indicated by the solid line while the measured pulse echo wavelet 

is indicated by the dashed line. 
It can be seen that all of the estimated kernels possess a similar structure, resembling 

a typical ultrasound pulse-echo wavelet. This is to be expected since the component due 

to the pulse-echo-wavelet (vpe(t)) dominates the axial blurring kernel [18]. The variation 

among the estimated kernels may be attributed to the statistical estimation errors, de- 

viation of the scatterer response from a statistically white response (which violates our 

assumption (A2)) and, contributions from the effects of the medium such as aberration 

and dispersive attenuation which have spatially varying characteristics. 

There is a reasonable match between the measured and average estimated kernels (Fig. 

2). within the limits of the accuracy of the experimentation. Looking at their spectra (see 

Fig. 2(b)) we can clearly see that the frequency spectrum of the estimated mean kernel 

has the salient features contained, in the experimental pulse echo wavelet measured in 

experiment (B). The center frequency of the spectra fall very close to the nominal center 

frequency of the transducer, 3.5 MHz. The measured wavelet has a slightly narrower 

main lobe, probably clue to the ringing introduced by the wire target used in experiment 

(B). However, it should be kept in mind that the measured kernel was obtained from 

simplified underwater experiments, which do not truly represent the situation inside the 

tissue mimicking phantom. 
The differences between the average estimated kernel and the measured kernel can be 

attributed to: 

(El) the variance associated with the estimation of third order cumulants. 

(E2)  the much higher dispersive attenuation and aberrations encountered inside the phan- 

tom in experiment (A), compared with those in experiment (B). 

15 



(E3) the non-whiteness of the underlying scatter response of the phantom that violates 

assumption (A2), 

(E4) approximate realization of a point target by a line target, in experiment (B). 

Averaging techniques that we used with both the cumulant estimates of observations and 

estimated kernels themselves, make the contributions to total error from (El) small. The 

errors introduced by approximating a point target by a thin wire target does not introduce   • 

serious errors either; this method is being used in the testing of ultrasound transducers in 

research environments, [32], [21]. 
The major contribution to the differences in estimated and measured kernels are from 

(£2) and (£3). In fact, by virtue of modifying the frequency spectrum of the received 

signal, attenuations appear as one component contributing to the non-whiteness (color) of 

the scatterer response, and thereby affects the kernel estimation procedure. To minimize 

the effect of attenuations on the stationary of our observations, we considered only short 

segments (eg. 64 or 128 samples at a 13.3MHz sampling rate) from each A-line of inter- 

est. Identifying and compensating for the color of the tissue response can be achieved by 

applying the blind deconvolution procedure proposed in [31] on different image lines [2]. 

The results we obtained support our model assumptions (Al)-(A3). It should be noted 

that (A2) actually contradicts the Gaussianity assumption, which is commonly made for the 

tissue response. However, non Gaussian models for the backscattered ultrasonic signals have 

been suggested and used in the past [42], [34], [29], [30]. In the method proposed here, if the 

tissue response were Gaussian, it would have been suppressed in the bispectrum domain, 

thereby rendering the estimation of an axial blurring kernel an impossibility. Hence, our 

success in the estimation supports the non Gaussianity assumption for RE ultrasound 

data. The structure of the measured kernel (experiment (B)) suggest that the axial kernel 

is indeed a non-minimum phase signal: the method proposed in this paper is capable of 

estimating non-minimum phase signals in contrast to existing techniques which can only 

estimate the minimum-phase equivalent of the true non-minimum phase signal. 

We consider the agreement between the estimated and measured kernels satisfactory 

within the ability of underwater measurements (Measurement B) to match the situation 

inside the phantom. 

6.3.2     HOS-based distortion estimation and the deconvolution of B-mode im- 

ages 

Images of a tissue mimicking phantom obtainedjvvith a single element transducer, 

Having established the validity of our assumptions and the kernel estimation technique 
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in the axial direction, we proceeded to estimate lateral distortion kernels from the image 

obtained in experiment (A), and to perform deconvolution. The lateral distortion kernels 

we estimated at locations covering a range of depths 6.58cm-9.42cm from the transducer 

surface can be seen in Fig. 3(a); their spectra are shown in Fig. 3(b). In these estimations, 

we used N = 32 and M = 10. Five adjacent lateral lines were used in each kernel estimation. 

In the lateral direction, the estimated kernels have characteristics similar to the lateral 

beam profiles of the imaging system. Unfortunately, there is no direct way to verify the ' 

results of our lateral estimations. In conventional transverse beam profile estimations, the 

experiments are usually done under water, and the pressure profiles are peak detected. This 

process masks instantaneous features of the beam, hence the results of such experiments 

can not be used in a verification. Moreover, it has been shown that in the presence of 

aberration, the lateral point spread function may undergo significant modifications [6], 

[39], possibly serious enough to change diagnoses in clinical situations [39]. Time histories 

of two dimensional instantaneous beam profiles at the focus, shown in [22], are in agreement 

with the observation that the lateral beam profile can depart heavily from the ideal in the 

presence of tissue inhomogeneities. These results suggest that, in principle, underwater 

experiments or theoretical formulae that do not take aberration in to account, can not be 

used in verifying lateral blurring kernels estimated from complex targets. Further, it should 

be noted that even though our lateral kernels are estimated at individual lateral image lines 

(i.e., at a fixed time) nearby lines contribute to the data at a given time by virtue of the 

spatio-temporal nature of Ultrasonic System Impulse Response defined earlier. 

Once the distortion kernels have been identified, retrieving the corresponding true tis- 

sue response becomes a typical deconvolution process. For the deconvolution, we used the 

constrained Wiener filter technique described in [40]. In performing the axial deconvolu- 

tion, we used the mean HOS-based axial distortion kernel vm(t) shown in Fig. 2., which 

was obtained with the method of Section 6.1.1; in the lateral direction, the mean lateral 

distortion kernel obtained as the average of the estimated kernels shown in Fig. 3 was used. 

Fig. 1(b) shows the logarithmically compressed envelope of the B-scan image, derived 

from the laterally deconvolved RF data corresponding to the original image shown in Fig. 

1(a). The axially deconvolved image is in Fig. 1(c) and the laterally followed by axially 

deconvolved image is in Fig. 1(d). Each image represents an area of 2.5cmX2.0cm in the 

true tissue space. For the sake of computational simplicity, we assumed that the lateral 

(and axial) blurring kernel do not vary significantly over different RF-image lines or different 

image depths in the amounts we are concerned with here. This allowed us to use a single 

blurring kernel, in each of the axial and lateral directions, to deconvolve the entire image. 

Using the average lateral kernel to laterally deconvolve a region of the image is justifiable 
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by the fact that all the kernels estimated from the depth range covering the image shown 

here (6.58cm to 9A2cm) show a certain degree of similarity. This may be due to the fact 

that the transducer we used had a focal zone of Q-I3cm, into which range the lateral image 

lines considered above belong. Moreover, the phantom we used in experiments had not 

been designed to simulate strong aberrating effects. As for the axial deconvolutions, the 

pulse'echo wavelet (the major contributor to the axial distortion kernel) of the imaging 

system is known to stay fairly constant over different RF-lines across the image [18], [16]; 

our results shown in Fig. 2 also support that hypothesis. However, the method proposed 

here is still valid, if one needs to estimate kernels for localized regions or individual image 

lines. To capture fine details in the pass band of the spectrum, one may still require a line 

by line, or region by region, lateral deconvolution. 

Quantifying resolution improvement 

According to Fig. 1, the deconvolution in the RF-domain results in a significant reduc- 

tion in the size of speckles, suggesting a gain in resolution. In order to quantify the apparent 

increase in resolution, we defined a measure of resolution based on the 2-D auto-covariance 

function of the image. Auto-covariance function of an image was computed on the RF data 

corresponding to the image, with the peak value of autocovariance normalized to 1.0. The 

lateral slice, L00. through the peak of the 2-D auto-covariance function was considered in 

defining the lateral resolution. The axial slice. A00- through the peak in defining the axial 

resolution. Similarly, the lateral resolution, R{JK was defined as the reciprocal of the width 

of Loo- at d dB below the peak of the slice. Axial resolution was defined similarly except 

for the fact that the envelope of the absolute value of the slice A00 was used. In this paper 

we used d = 5.00 and d = 10.00. Defining the resolution at two different dB levels allows 

us to get a better idea of the shape of the auto-covariance function. 

The reason for defining the axial resolution based on the envelope of absolute value of 

Aoo is as follows. We define the resolution in terms of the width, /„, of the main lobe of the 

auto-covariance function because, /0 is a measure of the average "smallness" of the basic 

building elements of the image. In the axial direction, the representation of a point target is 

an oscillatory, time-limited signal. Therefore, even when the target is a point in space, the 

received signal would have an auto-covariance function which shows oscillatory behavior 

(eg. Fig. 4(d)). In this case, the central lobe conveying information on the average image 

element5 size is the envelope of the absolute value of the auto-covariance function. 

The resolution was defined in the RF domain, because our kernel estimation and decon- 

volution procedure was done entirely in the RF-domain. The process of envelope detecting 

itself introduces blurring leading to an inaccurate estimate of the potential resolution dehv- 
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ered by deconvolution, thus making the envelope detected signal domain a less than ideal 

place to define resolution. Fig. 4(a) shows a 2D shaded mesh plot of the auto-covariance 

function of the RF-data corresponding to original image in Fig. 1(a). Fig. 4(b) shows 

the auto-variance function after lateral and axial deconvolutions. Absolute values of the 

auto-covariance function have been plotted for easy visualization. The slice L00 is shown in 

Fig. 4(c), where the solid line indicates the slice corresponding to the original image (Fig. 

1(a)) and the dotted line that of the laterally and axially deconvolved image (Fig. 1(c)). 

Corresponding plots of the axial slice A00 are in Fig. 4(d). 

The general decrease, in all directions, of the width of the main-lobe of the auto- 

covariance function due to deconvolution is obvious from Figs. 4(a) and 4(b). From Fig. 

4(c), we computed the lateral resolution gain, Gl
d, defined as: 

R{1° 
Gy) = ?d        d = 5dB,10dB, (14) 

Rd 
■(u)' 

where Rd'o) and Rd'd) respectively represent lateral resolutions before and after deconvolu- 

tion. A similar definition holds for the axial resolution gam. The lateral resolution gain at 

d = ödB and d = lOdB levels, between the original (Fig. 4(a)) and the laterally followed 

by axially deconvolved image (Fig. 4(c)) was found to be 2.7 and 3.0 respectively. The 

corresponding figures for axial resolution gain, G{
d
a\ was 1.73 and 1.72 respectively. 

Our results indicate that the lateral resolution gain is higher than the axial resolu- 

tion gain. Coupled with the fact that, in the original image blurring was much higher in 

the lateral direction, we can conclude lateral deconvolution is mostly responsible for the 

improvement in overall resolution. 
To investigate the effects of deconvolution on "speckle noise" levels, we defined the 

signal-to-noise ratio as, SNR = (£), where /t is the mean of the image and a2 is the variance. 

Since we performed our deconvolutions in the RF domain, our SNR calculations were also 

done in the RF-domain, on absolute values of RF-data. Computed over the original image 

(Fig. 1(a)), SNR = 1.24; computed over the laterally and axially deconvolved image, 

SNR = 1.26. After only an axial deconvolution. (Fig. 1(c)), SNR = 1-25, and after only a 

lateral deconvolution (Fig. 1(b)), SNR = 1.23. Based on these numbers, we conclude that 

the deconvolution results in a gain in resolution, but does not significantly alter speckle 

noise levels. The results of SNR computations and resolution gains have been summarized 

in Tables 1 and 2. 

Images of a tissue mimicking phantom obtained with clinical equipment 

In order to investigate the performance of our technique with B-scan images taken from 
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modern clinical equipment, we estimated axial and lateral distortion kernels from the RF- 

data collected in experiment (C). Fig. 5(a) shows the logarithmically compressed envelope 

of the original B-scan image. Average axial and lateral kernels estimated from the RF-data 

corresponding to Fig. 5(a) are illustrated in Fig. 6(a) and 6(b) respectively. These kernels 

indicate the average of 20 kernels estimated from the tissue mimicking background region 

of the phantom, between the two target cylinders (see Fig. 5). The spectra of the average 

axial kernel is shown in Fig. 6(c) and that of the average lateral kernel in Fig. 6(d). 

The result of lateral deconvolution is shown in Fig. 5(b); the result of lateral followed 

by axial deconvolution is shown in Fig. 5(c). Average estimated kernels shown in Fig. 6 

were used in both axial and lateral devolutions. Clearly, the deconvolution has resulted 

in a reduced speckle size and cleaner, better defined boundaries of the target cylinders. It 

is also evident that the attenuations associated with the imaging process show up much 

clearly in the deconvolved image. This may have significance in clinical imaging situations, 

where attenuation properties of tissue convey important diagnostic information. 

Fig. 7(a) and 7(b) illustrate the absolute value of the auto-covariance function of the 

RF-da°ta corresponding to the original (Fig. 7(a)) image and the laterally and axially 

deconvolved image (Fig. 7(d)). respectively. Fig. 7(c) and 7(d) show the lateral and 

axial slices Lo0 and A00 used to compute resolution gains. Based on data corresponding to 

Figs. 5 and 7, speckle SNR and resolution gains were computed and tabulated in Tables 

1 and 2. Figs. 5, 7 and Tables 1 and 2 lead to the conclusion that considerable resolution 

enhancement is possible with deconvolution. and that the process of deconvolution does not 

affect the speckle noise significantly. Once again, lateral resolution is found to be mostly 

responsible for the overall improvement in the image. 

Clinical images of a human liver 
To evaluate our method with clinical images, we obtained a B-scan of a liver image as 

described in experiment (D). section 3.1. Figure 8(a) shows a part of the logarithmically 

compressed envelope of the original image. Fig 9(a) and 9(b) show the average axial and 

lateral distortions estimated from the RF-data corresponding to Fig.  8(a).  Their spectra 

can be seen in Figs. 9(c) and 9(d). 
The results of lateral deconvolution is shown in Fig. 8(b); results of lateral followed by 

axial is in Fig.   8(c).   In all cases, logarithmically compressed envelope of the images has 

been displaved. 
\gain to visualize the improvement in resolution, we plotted the auto-covanances ot 

the orio-inal and deconvolved images. Fig. 10(a) and 10(b) illustrates the shaded 2-D mesh 

plot of the auto-covariances of RF-data corresponding to Figs. 8(a) and 8(c) respectively. 
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Corresponding L00 and A00 slices are shown in Figs. 10(c) and 10(d). Slices corresponding 

to original image are shown in solid lines, whereas those of the deconvolved image are shown 

in dotted lines. 
The lateral resolution gain, G[a) at d = UB and d = MB was found to be 3.0 and 2.5 

respectivelv. Corresponding numbers for the axial resolution gain were 1.7 and 1.5. Speckle 

SNR ratio computed for the original image (Fig. 8(a)) was SNR = 1.20; after lateral and 

axial devolutions (Fig. 8(c)) SNR = 1.33. Tables 1 and 2 summarize these results. 

These results suggest that considerable gain in resolution is possible with axial and 

lateral deconvolution of clinical images. 

6.3.3    SOS-based estimated distortions and deconvolution of B-mode images 

From the images obtained at experiments A, C and D. SOS-based distortions were estimated 

with the method of Section 6.1.2. The images were subsequently deconvolved, and the 

deconvolution results are shown in Figs. 11, 12 and 13, respectively. The corresponding 

resolution gains and speckle SNR are shown in Tables 3 and 4. 

Comparing Tables 1 and 2 to 3 and 4, we can conclude that the resolution improvement, 

both axial and lateral, was consistently superior when deconvolution was performed with 

the HOS-based estimated distortions. Deconvolution with HOS-based estimates led to 

axial resolution improvement 1.15 - 1.9 times higher than deconvolution with SOS-based 

estimates. The improvement of lateral resolution when deconvolving using HOS based 

estimates was more dramatic; it was better than the SOS based deconvolution by a factor 

in the range 1 68-4.5. The superiority of the HOS-based deconvolution is also evident 

by comparing the corresponding images deconvolved with HOS and SOS-based distortion 

estimates. 

7    CONCLUSIONS/FUTURE WORK 

Processing ultrasound images with higher-order spectral operations we were able to identify 

the distortion introduced by the ultrasonic system and the medium. The proposed method 

makes it possible to estimate both axial and instantaneous lateral blurring kernels, working 

on B-mode RF data. Distortion identification and subsequent cancelling (deconvolution) 

operations were carried out on 1-D lines of the RF image, thereby obviating the theoretical 

difficulties faced bv earlier attempts at beam deconvolution on envelope detected images. 

The method is capable of estimating mixed phase distortion kernels, and is immune to 

additive Gaussian noise. 

21 



Performing underwater experiments employing single element transducers, commercial 

tissue mimicking phantoms and simulated point targets, we showed that our kernel estima- 

tion procedure could be done with reasonable accuracy. The accuracy of the estimations 

were verified by measuring axial kernels underwater. 

Deconvolution results obtained with phantom data and clinical images indicate con- 

siderable resolution improvement. Lateral deconvolution contributes heavily to the gain 

in resolution, where the resolution was defined in terms of the dimensions of the auto- 

covariance function of the image. These results are significant because in unprocessed 

images, lateral'distortions are known to be as much as 3-5 times severe than axial distor- 

tions, leading to a change in appearance in clinical images depending on the orientation of 

the scanner. Through lateral deconvolution, one can compensate for the lateral distortions 

and try to achieve consistent images independent from the angular position of the scanner. 

In the past, distortion estimation was carried out exclusively in the second-order statistics 

domain. We demonstrated that deconvolution based on HOS-based distortion estimates 

leads to superior axial and in particular lateral resolution improvement than the one with 

SOS-based estimates. 
It has been reported that high transducer frequencies required for high resolution imag- 

ing actually lead to lower resolution in the presence of increased aberration in breast at 

higher frequencies [8]. In [36] it is pointed out that medium inhomogeneities are also impor- 

tant in systems where a larger aperture is used for higher lateral resolution. In general, the 

aberration correction is of fundamental importance in high resolution medical ultrasonic 

systems. The ability of the proposed method to compensate for convolution components 

of aberration holds promise in improving the diagnostic value of B-mode medical images 

bevond the capabilities of hardware. 
Deconvolution. viewed as an image de-blurring/restoration operation, should reveal 

those small structures (such as early stage tumors) that had been hidden away from 

view due to imaging distortions (including convolutional components of aberrations), but 

otherwise would show up on a hypothetical, perfect rmager. A deconvolved image also 

means access to a distortion-free tissue signal, which is largely independent of the imaging 

system. Therefore, tissue characterization schemes which ideally require imaging-system- 

independent data could be based on deconvolved RF images. In addition, the estimated 

distortion kernels themselves carry information on the statistical structure of scatterer field 

as manifested through the color of the scatterer response (tissue response), attenuations 

and. propagation non-linearities associated with the phantom (tissue). 

Currently, efforts are under way to see how much improvement in resolution is possible 

with ultrasound images of the breast. We have ordered a custom made anthropomorphic 
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breast phantom and we we expect to begin experiments with breast data within August 

1995. 
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9    FIGURES/TABLES 

Fig 1 A speckle-only part of the ultrasound image of the tissue mimicking phantom obtained 
with a focused single element transducer experiment (A); (b) the result of lateral de^ 
convolution; (c) the result of axial deconvolution and, (d) the result of lateral followed 
by axial deconvolution. In all cases, the logarithmically compressed envelope is shown. 
Deconvolution was performed with the higher-order statistics based estimated dis- 

tortions. 
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Fig.2 Underwater experiments (experiments (A) and (B)): (a) axial kernels estimated at var- 
ious lateral positions in the B-mode image of the tissue mimicking phantom (dotted 
lines); average of the estimated kernels (solid line). The experimental kernel, measured 
as the reflection off a 0.812mm diameter wire surface, under water. The close agreement 
between the estimated and the measured kernels (with in limits of experimental errors), 
indicates the success of the estimation procedure, (b) Spectra of the average estimated 
kernel (solid line) and the measured kernel (dashed line). The center frequency of both 
kernels are compatible with the nominal center frequency of the transducer, 3.5MHz. 
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Fig.3 (a) Lateral distortion kernels estimated at various axial depths from the RF data cor- 
responding to the image shown in Fig. 1(a). All the kernels are estimated within the 
focal zone of the transducer, 6 - 13cm. (b) Spectra of the lateral kernels shown in (a). 
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Fig.4 Shaded auto-covariance function of the RF-data corresponding to: (a) the original image 
shown in Fig. 1(a); (b) the laterally and axially deconvolved image shown in Fig. 1(d). 
Absolute values of the auto-covariance functions have been shown for easy visualization, 
(c) The lateral slice Loo and (d) the axial slice v40o of the auto-covariance function 
corresponding to: the original image (solid lines), the deconvolved image (dotted lines). 



(a) (b) 

(c) 

Fig.5 (Experiment (C)): (a) The original image of the tissue mimicking phantom obtained 
with the linear array transducer on a clinical imaging system; (b) the result of lateral 
deconvolution and (c) the result of lateral and axial deconvolution. The logarithmically 
compressed envelope has been used for display. Deconvolution was performed with the 
higher-order statistics based estimated distortions. 
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Fig.6 (Experiment (Q): (a) The average of the estimated axial kerne s from RF-data com. 
ponding to image shown in Fig.   5(a), and (b) its spectrum    (c) The average of   he 

lateral tends estimated from RF-data corresponding to Fig. 5(a) and (d) its spectrum. 
These kernels were estimated from the region between the two cylindrical targets m Fig. 

5(a). 
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Fig 7 Shaded auto-covariance function of the RF-data corresponding to: (a) the original image 
shown in Fig. 5(a); (b) the laterally and axially deconvolved image shown in Fig. 5(d). 
Absolute values of the auto-covariance functions have been shown for easy visualization, 
(c) The lateral slice L00 and (d) the axial slice A00 of the auto-covariance function 
corresponding to: the original image (solid lines), the deconvolved image (dotted lines). 
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Fig 8 (Experiment (D)): (a) A part of the clinical image of a human liver containing a tumor; 
b) the result of lateral deconvolution and (c) the result of lateral and axial deconvolu- 

tion. In all cases the logarithm of the envelope is shown. Deconvolution was performed 
with the higher-order statistics based estimated distortions. 
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Fig 9 (Experiment (DJ): (a) The average of the estimated axial kernels from RF-data corre- 
sponding to image shown in Fig. 8(a), and (b) its spectrum, (c) The average of the 
lateral kernels estimated from RF-data corresponding to Fig. 8(a) and (d) its spectrum. 
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Fig. 10 Shaded auto-covariance function of the RF-data corresponding to: (a) the original image 
shown in Fig. 8(a); (b) the laterally and axially deconvolved image shown m Fig. 8(d). 
Absolute values of the auto-covariance functions have been shown for easy visualization, 
(c) The lateral slice Lo0 and (d) the axial slice A00 of the auto-covariance function 
corresponding to: the original image (solid lines), the deconvolved image (dotted lines). 
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Fig 11 A speckle-only part of the ultrasound image of the tissue minnckmg phantom obtained 
S with a focused single element transducer experiment (A); (b) the result of lateral de- 

convolution; (c) the result of axial deconvolution and, (d) the result of lateral followed 
by axial deconvolution. In all cases, the logarithmically compressed envelope is shown. 
Deconvolution was performed with the second-order statistics based estimated dis- 

tortions. 



Fig. 12 {Experiment (C)): (a) The original image of the tissue mimicking phantom obtained 
with the linear array transducer on a clinical imaging system; (b) the result of lateral 
deconvolution and (c) the result of lateral and axial deconvolution. The logarithmically 
compressed envelope has been used for display. Deconvolution was performed with the 
second-order statistics based estimated distortions. 
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Fig.13 (Experiment (DJ): (a) A part of the clinical image of a human liver containing a tumor; 
(b) the result of lateral deconvolution and (c) the result of lateral and axial deconvolu- 
tion. In all cases the logarithm of the envelope is shown. Deconvolution was performed 
with the second-order statistics based estimated distortions. 



Table 1: Resolution gains due to deconvolution with HOS-based estimated distrotions 

Resolution Gains 
lateral axial 

5dB lOdB 5dB lOdB 

Experiment (A) 
Experiment (C) 
Experiment (D) 

2.7 
5.2 
3.0 

3.0 
4.2 
2.5 

1.7 
1.8 
1.7 

1.7 
1.9 
1.5 

Table 2: The effect of deconvolution with HOS-based distortions on the speckle SNR 

ratio 

Experiment (A) 
Experiment (C) 
Experiment (D) 

SNR 
original 

1.24 
1.17 
1.20 

deconvolved 

1.26 
1.10 
1.30 
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Table 3: The effect of deconvolution with SOS-based distortions on the speckle SNR 

ratio 
Resolution Gains 

lateral axial 
5dB lOdB 5dB lOdB 

Experiment (A) 
Experiment (C) 
Experiment (D) 

1.6 
1.85 
1.50 

1.35 
0.93 
1.44 

1.53 
1.48 
1.50 

1.20 
1.64 
1.23 

Table 4: The effect of deconvolution with SOS-based distortions on the speckle SNR 

ratio 

Experiment (A) 
Experiment' (C) 
Experiment (D) 

SNR 
original 

1.21 
1.2 

1.10 

deconvolved 

1.24 
1.20 
1.17 
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MEETING ABSTRACTS 

SPIE International Symposium on Optics, Imaging and Instrumentation, San Diego. July 

1994. 

Blind Deconvolution of Ultrasound Images 

Udantha R. Abeyratne, Athina P. Petropulu* and John M. Reid 

Biomedical Engineering and Science Institute 

»Department of Electrical and Computer Engineering, 

Drexel University, Philadelphia, PA 19104 

We address the problem of improving the resolution of ultrasound images using blind 

deconvolution. The transducer measurement that forms the ultrasound image can be ex- 

pressed as the convolution of two terms, the tissue response and the ultrasonic system 

response, plus additive noise. The quantity of interest is the tissue response, however, due 

to the convolution operation, we measure a blurred version of it, which obscures the fine 

details in the image. Our goal is to remove the blurring caused by the ultrasonic system, 

in order to enhance the diagnostic quality of the ultrasound image. Under the assump- 

tion that speckle behaves as an i.i.d. zero-mean non-Gaussian process, we were able to 

reconstruct the blurring kernel using bicepstrum operations on corresponding A-scan lines. 

Based on the estimated blurring kernel we performed deconvolution on the measured im- 

age. Preliminary results obtained from ultrasound images of a tissue mimicking phantom 

indicate significant resolution improvement. 

20th International Symposium on Ultrasonic Imaging and Tissue Characterization, Arling- 

ton, VA, June 1995. 

Estimating Imaging-Distortions and the Color of the Tissue Response From 

Ultrasonic Images 

Udantha R. Abeyratne, Athina P. Petropulu'. John M. Reid and Thomas Golas* 

Biomedical Engineering and Science Institute 

-Department of Electrical and Computer Engineering, 

Drexel University, Philadelphia, PA 19104 

We address the problem of estimating imaging-distortions and modeling the tissue re- 

sponse from clinical B-scan ultrasound images, based on rf A-lines that form the image. We 
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model rf A-lines as: yi(n) = hi(n) * ft(n) + w{(n), i = 1, 2, ■ • •, where yi(n) is the observed 

rf A-line, /,-(w) is the tissue response, iu,-(ra) is the observation noise and hz{n) is the ker- 

nel representing imaging distortions; the symbol V stands for the convolution operation. 

The fol- lowing assumptions are made: [Al] h^n) is deterministic, possibly non- minimum 

phase, [A2] /,-(n) is stationary, zero-mean non-Gaussian, modeled as the convolution of a 

white component e,-(n) and a deterministic part U{n) corresponding to the statistical color 

of the issue response, [A3] Wi(n) is zero-mean, Gaussian, and independent of /,-(n). A col- 

ored random process is taken as the model for the tissue response, considering the fact that 

under- lying scatterers need not be randomly and independently located. Applying higher 

order spectra based blind deconvolution on pairs of closely located rf A-lines, we identify 

the color of the tissue response as well as the distortion kernels. The color of the tissue 

response is independent of the imaging system and can be used in tissue characterization. 

We estimate distortion kernels and the color of the tissue response, from a B-mode image 

of a human liver, containing a tumor. The statistical color of the tissue response estimated 

inside the tumor has features that are distinctly different from those estimated outside the 

tumor. This may be attributed to the change in the tissue structures brought about by 

the tumor. Our kernel estimation and color identification process is based on data from 

regions as small as 12 mm2 (approx.) in the tissue space. The advantages of the proposed 

approach are:(a) since the estimations are carried out in higher order spectra domain, results 

are immune to additive Gaussian noise in observations, and (b) both minimum phase and 

non-minimum phase kernels can be estimated. We compare our method with existing non- 

parametric pulse estimation techniques and demonstrate relative strengths and weaknesses. 

IEEE Workshop on Nonlinear Signal and Image Processing, Neos Marmaras, Greece. June 

1995.   . 

Higher Order Spectra Based Deconvolution of Ultrasound Images 

Udantha R. Abeyratne. Athina P. Petropulu*, John M. Reid 

Biomedical Engineering and Science Institute 

+ Electrical and Computer Engineering Department 

Drexel University, Philadelphia. PA 19104 

Our goal is to model and identify the tissue response based on the backscattered rf 

signal that forms the ultrasound image. We model the rf ultrasonic image, in both axial 

and lateral directions, as the convolution between an 1-D hypothetical tissue response and 
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the ultrasonic system response (distortion), plus additive Gaussian noise. We model the 

tissue response as a non-Gaussian, colored random process. Closely spaced axial (lateral) 

image lines contain as a common convolutional term the axial (lateral) distortion, whereas 

the noncommon terms are due to the tissue color. Applying blind deconvolution, we identify 

the color of the tissue response as well as the corresponding distortion kernels. The color 

of the tissue response is independent of the imaging system and can be used as a tissue 

characterization parameter. Estimated kernels are compared with experimentally obtained 

kernels, and the deconvolution of real ultrasound images is performed. 

Asilomar 1995, submitted 

Q-Weighted Cumulant Projection: A New Tool For System Identification 

Udantha R. Abeyratne and Athina P. Petropulu* 

Biomedical Engineering and Science Institute 

'Department of Electrical and Computer Engineering, 

Drexel University, Philadelphia. PA 19104 

Summary 

It is well established that identification of a nonminimum phase non-Gaussian random 

process can be achieved based on its higher-order cumulants (order three or higher). We 

propose a computationally attractive approach for system identification, whose complex- 

ity remains constant as the order of the employed cumulants increases. We define the 

Q-weighted nth-ordev cumulant projection of the process x{k) to be 

.*,„.^ -£...£ <(r,r2,...,rJl_1)a
T+T5+-+rn-1,    a : complex, \a\ = 1, 

T2 Tn-l 

115^ 

where <(•) denotes nth order cumulant. For the process 

x(k) = h(k)*e(k). (16) 

where e.(fc) is white non-Gaussian zero-mean, and h(k) is deterministic generally nonmim- 

mum phase, we prove that 

PZ(z:a) = cH{<x-'z)H(aln-1)z-1), (17) 

where P*(~-a) is the Z-transform of p£(r;a). and c is a constant.  ;From (17). it can be 

shown that by controlling a. H[z) can be identified for n > 2. If #(fc; a) and h(k) denote 
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the complex cepstra of fn{r\ a) and h(k), respectively, we show that 

i(i) = «(^^»i),i>0 (18) 

M)= -^TJ-T^^O' (19) 

which leads to a scaled and shifted version of h(k) via inverse cepstrum operations. We 

show that we can always find a complex number a with unit magnitude to guarantee that 

the denominator in (18) and (19) is different from zero, and discuss the rationale behind 

choosing a particular value for a. 
Based on equation (17) a formula for the estimation of the Fourier phase of h{k) from 

the phase of the a-weighted cumulant projection is also derived. 
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